Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.256
Filtrar
1.
Environ Microbiol ; 26(4): e16604, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561900

RESUMO

Aphids are globally important pests causing damage to a broad range of crops. Due to insecticide resistance, there is an urgent need to develop alternative control strategies. In our previous work, we found Pseudomonas fluorescens PpR24 can orally infect and kill the insecticide-resistant green-peach aphid (Myzus persicae). However, the genetic basis of the insecticidal capability of PpR24 remains unclear. Genome sequencing of PpR24 confirmed the presence of various insecticidal toxins such as Tc (toxin complexes), Rhs (rearrangement hotspot) elements, and other insect-killing proteases. Upon aphids infection with PpR24, RNA-Seq analysis revealed 193 aphid genes were differentially expressed with down-regulation of 16 detoxification genes. In addition, 1325 PpR24 genes (542 were upregulated and 783 downregulated) were subject to differential expression, including genes responsible for secondary metabolite biosynthesis, the iron-restriction response, oxidative stress resistance, and virulence factors. Single and double deletion of candidate virulence genes encoding a secreted protease (AprX) and four toxin components (two TcA-like; one TcB-like; one TcC-like insecticidal toxins) showed that all five genes contribute significantly to aphid killing, particularly AprX. This comprehensive host-pathogen transcriptomic analysis provides novel insight into the molecular basis of bacteria-mediated aphid mortality and the potential of PpR24 as an effective biocontrol agent.


Assuntos
Afídeos , Inseticidas , Pseudomonas fluorescens , Animais , Afídeos/genética , Pseudomonas fluorescens/genética , Peptídeo Hidrolases , Inseticidas/farmacologia , Perfilação da Expressão Gênica
2.
Pestic Biochem Physiol ; 200: 105802, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582605

RESUMO

Aphids are a major problem in agriculture, horticulture, and forestry by feeding on leaves and stems, causing discoloration, leaf curling, yellowing, and stunted growth. Although urushiol, a phenolic compound containing a catechol structure, is known for its antioxidant and anticancer properties, using small molecules to control aphids via catechol-mediated mechanisms is poorly understood. In this study, we investigated the effects of 3-methylcatechol (3-MC) on Myzus persicae fecundity. Our results showed that treatment with 3-MC significantly reduced the intrinsic transcriptional activity of the aphid estrogen-related receptor (MpERR), which regulates the expression of glycolytic genes. Additionally, 3-MC treatment suppressed the promoter activity of MpERR-induced rate-limiting enzymes in glycolysis, such as phosphofructokinase and pyruvate kinase, by inhibiting MpERR binding. Finally, 3-MC also suppressed MpERR-induced glycolytic gene expression and reduced the number of offspring produced by viviparous female aphids. Overall, our findings suggest that 3-MC has the potential to be used as a new strategy for managing aphid populations by controlling their offspring production.


Assuntos
Afídeos , Animais , Afídeos/genética , Catecóis/farmacologia , Expressão Gênica , Estrogênios/farmacologia
3.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1170-1194, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658156

RESUMO

Sorghum aphid (Melanaphis sacchari) and head smut fungi (Sporisorium reilianum) infesting sorghum cause delayed growth and development, and reduce yield and quality. This study use bioinformatics and molecular biological approaches to profile the gene expression pattern during sorghum development and under pest infestation, and analyzed the natural allelic DNA variation of sorghum MYC gene family. The findings provide insights for potential application in breeding the stress resistant and high productivity sorghum varieties. The results indicated that there are 28 MYC genes identified in sorghum genome, distributed on 10 chromosomes. The bHLH_MYC_N and HLH domains are the conserved domains of the MYC gene in sorghum. Gene expression analysis showed that SbbHLH35.7g exhibited high expression levels in leaves, SbAbaIn showed strong expression in early grains, and SbMYC2.1g showed high expression levels in mature pollen. In anti-aphid strains at the 5-leaf stage, SbAbaIn, SbLHW.4g and SbLHW.2g were significantly induced in leaves, while SbbHLH35.7g displayed the highest expression level in panicle tissue, which was significantly induced by the infection of head smut. Promoter cis-element analysis identified methyl jasmonate (MJ), abscisic acid (ABA), salicylic acid (SA) and MYB-binding sites related to drought-stress inducibility. Furthermore, genomic resequencing data analysis revealed natural allelic DNA variations such as single nucleotide polymorphism (SNP) and insertion-deletion (INDEL) for the key SbMYCs. Protein interaction network analysis using STRING indicated that SbAbaIn interacts with TIFYdomain protein, and SbbHLH35.7g interacts with MDR and imporin. SbMYCs exhibited temporal and spatial expression patterns and played vital roles during the sorghum development. Infestation by sugarcane aphids and head smut fungi induced the expression of SbAbaIn and SbbHLH35.7g, respectively. SbAbaIn modulated the jasmonic acid (JA) pathway to regulate the expression of defensive genes, conferring resistance to insects. On the other hand, SbbHLH35.7g participated in detoxification reactions to defend against pathogens.


Assuntos
Acetatos , Alelos , Afídeos , Ciclopentanos , Sorghum , Sorghum/genética , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Afídeos/genética , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Perfilação da Expressão Gênica , Animais , Regulação da Expressão Gênica de Plantas , Variação Genética , Genes myc/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia
4.
Sci Rep ; 14(1): 5378, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38438424

RESUMO

The unculturable nature of intracellular obligate symbionts presents a significant challenge for elucidating gene functionality, necessitating the development of gene manipulation techniques. One of the best-studied obligate symbioses is that between aphids and the bacterial endosymbiont Buchnera aphidicola. Given the extensive genome reduction observed in Buchnera, the remaining genes are crucial for understanding the host-symbiont relationship, but a lack of tools for manipulating gene function in the endosymbiont has significantly impeded the exploration of the molecular mechanisms underlying this mutualism. In this study, we introduced a novel gene manipulation technique employing synthetic single-stranded peptide nucleic acids (PNAs). We targeted the critical Buchnera groEL using specially designed antisense PNAs conjugated to an arginine-rich cell-penetrating peptide (CPP). Within 24 h of PNA administration via microinjection, we observed a significant reduction in groEL expression and Buchnera cell count. Notably, the interference of groEL led to profound morphological malformations in Buchnera, indicative of impaired cellular integrity. The gene knockdown technique developed in this study, involving the microinjection of CPP-conjugated antisense PNAs, provides a potent approach for in vivo gene manipulation of unculturable intracellular symbionts, offering valuable insights into their biology and interactions with hosts.


Assuntos
Afídeos , Buchnera , Ácidos Nucleicos , Orobanchaceae , Ácidos Nucleicos Peptídicos , Animais , Ácidos Nucleicos Peptídicos/genética , Buchnera/genética , Afídeos/genética , Ervilhas , Elementos Antissenso (Genética)
5.
Mol Plant ; 17(4): 614-630, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38454602

RESUMO

The infection of host plants by many different viruses causes reactive oxygen species (ROS) accumulation and yellowing symptoms, but the mechanisms through which plant viruses counteract ROS-mediated immunity to facilitate infection and symptom development have not been fully elucidated. Most plant viruses are transmitted by insect vectors in the field, but the molecular mechanisms underlying virus‒host-insect interactions are unclear. In this study, we investigated the interactions among wheat, barley yellow dwarf virus (BYDV), and its aphid vector and found that the BYDV movement protein (MP) interacts with both wheat catalases (CATs) and the 26S proteasome ubiquitin receptor non-ATPase regulatory subunit 2 homolog (PSMD2) to facilitate the 26S proteasome-mediated degradation of CATs, promoting viral infection, disease symptom development, and aphid transmission. Overexpression of the BYDV MP gene in wheat enhanced the degradation of CATs, which leading to increased accumulation of ROS and thereby enhanced viral infection. Interestingly, transgenic wheat lines overexpressing BYDV MP showed significantly reduced proliferation of wingless aphids and an increased number of winged aphids. Consistent with this observation, silencing of CAT genes also enhanced viral accumulation and reduced the proliferation of wingless aphids but increased the occurrence of winged aphids. In contrast, transgenic wheat plants overexpressing TaCAT1 exhibited the opposite changes and showed increases in grain size and weight upon infection with BYDV. Biochemical assays demonstrated that BYDV MP interacts with PSMD2 and promotes 26S proteasome-mediated degradation of TaCAT1 likely in a ubiquitination-independent manner. Collectively, our study reveals a molecular mechanism by which a plant virus manipulates the ROS production system of host plants to facilitate viral infection and transmission, shedding new light on the sophisticated interactions among viruses, host plants, and insect vectors.


Assuntos
Afídeos , Luteovirus , Complexo de Endopeptidases do Proteassoma , Viroses , Animais , Triticum , Afídeos/genética , Catalase , Proteínas Virais , Espécies Reativas de Oxigênio , Luteovirus/genética , Plantas Geneticamente Modificadas , Doenças das Plantas
6.
Pestic Biochem Physiol ; 199: 105774, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458681

RESUMO

Aphis gossypii, a globally distributed and economically significant pest of several crops, is known to infest a wide range of host plants. Heat shock proteins (Hsps), acting as molecular chaperones, are essential for the insect's environmental stress responses. The present study investigated the molecular characteristics and expression patterns of AgHsp70, a heat shock protein gene, in Aphis gossypii. Our phylogenetic analysis revealed that AgHsp70 shared high similarity with homologs from other insects, suggesting a conserved function across species. The developmental expression profiles of AgHsp70 in A. gossypii showed that the highest transcript levels were observed in the fourth instar nymphs, while the lowest levels were detected in the third instar nymphs. Heat stress and exposure to four different xenobiotics (2-tridecanone, tannic acid, gossypol, and flupyradifurone (4-[(2,2-difluoroethyl)amino]-2(5H)-furanone)) significantly up-regulated AgHsp70 expression. Knockdown of AgHsp70 using RNAi obviously increased the susceptibility of cotton aphids to 2-tridecanone, gossypol and flupyradifurone. Dual-luciferase reporter assays revealed that gossypol and flupyradifurone significantly enhanced the promoter activity of AgHsp70 at a concentration of 10 mg/L. Furthermore, we identified the transcription factor heat shock factor (HSF) as a regulator of AgHsp70, as silencing AgHSF reduced AgHsp70 expression. Our results shed light on the role of AgHsp70 in xenobiotic adaptation and thermo-tolerance.


Assuntos
4-Butirolactona/análogos & derivados , Afídeos , Gossipol , Cetonas , Polifenóis , Piridinas , Animais , Afídeos/genética , Afídeos/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Gossipol/metabolismo , Filogenia , Xenobióticos/farmacologia , Xenobióticos/metabolismo
7.
Funct Integr Genomics ; 24(2): 43, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38418630

RESUMO

Rapeseed-mustard, the oleiferous Brassica species are important oilseed crops cultivated all over the globe. Mustard aphid Lipaphis erysimi (L.) Kaltenbach is a major threat to the cultivation of rapeseed-mustard. Wild mustard Rorippa indica (L.) Hiern shows tolerance to mustard aphids as a nonhost and hence is an important source for the bioprospecting of potential resistance genes and defense measures to manage mustard aphids sustainably. We performed mRNA sequencing of the R. indica plant uninfested and infested by the mustard aphids, harvested at 24 hours post-infestation. Following quality control, the high-quality reads were subjected to de novo assembly of the transcriptome. As there is no genomic information available for this potential wild plant, the raw reads will be useful for further bioinformatics analysis and the sequence information of the assembled transcripts will be helpful to design primers for the characterization of specific gene sequences. In this study, we also used the generated resource to comprehensively analyse the global profile of differential gene expression in R. indica in response to infestation by mustard aphids. The functional enrichment analysis of the differentially expressed genes reveals a significant immune response and suggests the possibility of chitin-induced defense signaling.


Assuntos
Afídeos , Rorippa , Animais , Mostardeira/genética , Transcriptoma , Afídeos/genética , Rorippa/genética
8.
Sci Data ; 11(1): 194, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351256

RESUMO

Waterlily aphid, Rhopalosiphum nymphaeae (Linnaeus), is a host-alternating aphid known to feed on both terrestrial and aquatic hosts. It causes damage through direct herbivory and acting as a vector for plant viruses, impacting worldwide Prunus spp. fruits and aquatic plants. Interestingly, R. nymphaeae's ability to thrive in both aquatic and terrestrial conditions sets it apart from other aphids, offering a unique perspective on adaptation. We present the first high-quality R. nymphaeae genome assembly with a size of 324.4 Mb using PacBio long-read sequencing. The resulting assembly is highly contiguous with a contig N50 reached 12.7 Mb. The BUSCO evaluation suggested a 97.5% completeness. The R. nymphaeae genome consists of 16.9% repetitive elements and 16,834 predicted protein-coding genes. Phylogenetic analysis positioned R. nymphaeae within the Aphidini tribe, showing close relations to R. maidis and R. padi. The high-quality reference genome R. nymphaeae provides a unique resource for understanding genome evolution in aphids and paves the foundation for understanding host plant adaptation mechanisms and developing pest control strategies.


Assuntos
Afídeos , Genoma de Inseto , Animais , Afídeos/genética , Nymphaea , Filogenia
9.
BMC Genomics ; 25(1): 153, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38326788

RESUMO

BACKGROUND: Russian wheat aphid (Diuraphis noxia Kurd.) is a severe pest to wheat, and even though resistance varieties are available to curb this pest, they are becoming obsolete with the development of new virulent aphid populations. Unlike many other aphids, D noxia only harbours a single endosymbiont, Buchnera aphidicola. Considering the importance of Buchnera, this study aimed to elucidate commonalities and dissimilarities between various hosts, to better understand its distinctiveness within its symbiotic relationship with D. noxia. To do so, the genome of the D. noxia's Buchnera was assembled and compared to those of other aphid species that feed on diverse host species. RESULTS: The overall importance of several features such as gene length and percentage GC content was found to be critical for the maintenance of Buchnera genes when compared to their closest free-living relative, Escherichia coli. Buchnera protein coding genes were found to have percentage GC contents that tended towards a mean of ~ 26% which had strong correlation to their identity to their E. coli homologs. Several SNPs were identified between different aphid populations and multiple isolates of Buchnera were confirmed in single aphids. CONCLUSIONS: Establishing the strong correlation of percentage GC content of protein coding genes and gene identity will allow for identifying which genes will be lost in the continually shrinking Buchnera genome. This is also the first report of a parthenogenically reproducing aphid that hosts multiple Buchnera strains in a single aphid, raising questions regarding the benefits of maintaining multiple strains. We also found preliminary evidence for post-transcriptional regulation of Buchnera genes in the form of polyadenylation.


Assuntos
Afídeos , Buchnera , Animais , Buchnera/genética , Buchnera/metabolismo , Escherichia coli , Afídeos/genética , Afídeos/metabolismo , Regulação da Expressão Gênica , Dieta , Simbiose/genética
10.
Nat Commun ; 15(1): 1379, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355730

RESUMO

Aphidius gifuensis is a parasitoid wasp and primary endoparasitoid enemy of the peach potato aphid, Myzus persicae. Artificially reared, captive wasps of this species have been extensively and effectively used to control populations of aphids and limit crop loss. However, the consequences of large-scale releasing of captive A. gifuensis, such as genetic erosion and reduced fitness in wild populations of this species, remains unclear. Here, we sequence the genomes of 542 A. gifuensis individuals collected across China, including 265 wild and 277 human-intervened samples. Population genetic analyses on wild individuals recovered Yunnan populations as the ancestral group with the most complex genetic structure. We also find genetic signature of environmental adaptation during the dispersal of wild populations from Yunnan to other regions. While comparative genomic analyses of captive wasps revealed a decrease in genetic diversity during long-term rearing, population genomic analyses revealed signatures of natural selection by several biotic (host plants) or abiotic (climate) factors, which support maintenance of the gene pool of wild populations in spite of the introduction of captive wasps. Therefore, the impact of large-scale release is reduced. Our study suggests that A. gifuensis is a good system for exploring the genetic and evolutionary effects of mass rearing and release on species commonly used as biocontrol agents.


Assuntos
Afídeos , Vespas , Humanos , Animais , Vespas/genética , China , Seleção Genética , Afídeos/genética , Variação Genética , Interações Hospedeiro-Parasita
11.
J Evol Biol ; 37(2): 162-170, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38366251

RESUMO

Host-parasite coevolution is mediated by genetic interactions between the antagonists and may lead to reciprocal adaptation. In the black bean aphid, Aphis fabae fabae, resistance to parasitoids can be conferred by the heritable bacterial endosymbiont Hamiltonella defensa. H. defensa has been shown to be variably protective against different parasitoid species, and different genotypes of the black bean aphid's main parasitoid Lysiphlebus fabarum. However, these results were obtained using haphazard combinations of laboratory-reared insect lines with different origins, making it unclear how representative they are of natural, locally (co)adapted communities. We therefore comprehensively sampled the parasitoids of a natural A. f. fabae population and measured the ability of the five most abundant species to parasitize aphids carrying the locally prevalent H. defensa haplotypes. H. defensa provided resistance only against the dominant parasitoid L. fabarum (70% of all parasitoids), but not against less abundant parasitoids, and resistance to L. fabarum acted in a genotype-specific manner (G × G interactions between H. defensa and L. fabarum). These results confirm that strong species- and genotype-specificity of symbiont-conferred resistance is indeed a hallmark of wild A. f. fabae populations, and they are consistent with symbiont-mediated adaptation of aphids to the parasitoids posing the highest risk.


Assuntos
Afídeos , Vespas , Animais , Afídeos/genética , Afídeos/microbiologia , Vespas/genética , Interações Hospedeiro-Parasita/genética , Simbiose , Enterobacteriaceae
12.
J Agric Food Chem ; 72(7): 3406-3414, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38329423

RESUMO

The expression of P450 genes is regulated by trans-regulatory factors or cis-regulatory elements and influences how endogenous or xenobiotic substances are metabolized in an organism's tissues. In this study, we showed that overexpression of the cytochrome P450 gene, CYP6CY22, led to resistance to cyantraniliprole in Aphis gossypii. The expression of CYP6CY22 increased in the midgut and remaining carcass of the CyR strain, and after repressing the expression of CYP6CY22, the mortality of cotton aphids increased 2.08-fold after exposure to cyantraniliprole. Drosophila ectopically expressing CYP6CY22 exhibited tolerance to cyantraniliprole and cross-tolerance to xanthotoxin, quercetin, 2-tridecanone, tannic acid, and nicotine. Moreover, transcription factor CF2-II (XM_027994540.2) is transcribed only as the splicing variant isoform CF2-II-AS, which was found to be 504 nucleotides shorter than CF2-II in A. gossypii. RNAi and yeast one-hybrid (Y1H) results indicated that CF2-II-AS positively regulates CYP6CY22 and binds to cis-acting element p (-851/-842) of CYP6CY22 to regulate its overexpression. The above results indicated that CYP6CY22 was regulated by the splicing isoform CF2-II-AS, which will help us further understand the mechanism of transcriptional adaption of cross-tolerance between synthetic insecticides and plant secondary metabolites mediated by P450s.


Assuntos
Afídeos , Inseticidas , Polifenóis , Pirazóis , ortoaminobenzoatos , Animais , Processamento Alternativo , Afídeos/genética , Afídeos/metabolismo , Xenobióticos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Isoformas de Proteínas/genética , Inseticidas/farmacologia , Inseticidas/metabolismo , Resistência a Inseticidas/genética
13.
PLoS One ; 19(2): e0289527, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38386640

RESUMO

The study was conducted to identify novel simple sequence repeat (SSR) markers associated with resistance to corn aphid (CLA), Rhopalosiphum maidis L. in 48 selected bread wheat (Triticum aestivum L.) and wild wheat (Aegilops spp. & T. dicoccoides) genotypes during two consecutive cropping seasons (2018-19 and 2019-20). A total of 51 polymorphic markers containing 143 alleles were used for the analysis. The frequency of the major allele ranged from 0.552 (Xgwm113) to 0.938 (Xcfd45, Xgwm194 and Xgwm526), with a mean of 0.731. Gene diversity ranged from 0.116 (Xgwm526) to 0.489 (Xgwm113), with a mean of 0.354. The polymorphic information content (PIC) value for the SSR markers ranged from 0.107 (Xgwm526) to 0.370 (Xgwm113) with a mean of 0.282. The results of the STRUCTURE analysis revealed the presence of four main subgroups in the populations. Analysis of molecular variance (AMOVA) showed that the between-group difference was around 37 per cent of the total variation contributed to the diversity by the whole germplasm, while 63 per cent of the variation was attributed between individuals within the group. A general linear model (GLM) was used to identify marker-trait associations, which detected a total of 23 and 27 significant new marker-trait associations (MTAs) at the p < 0.01 significance level during the 2018-19 and 2019-20 crop seasons, respectively. The findings of this study have important implications for the identification of molecular markers associated with CLA resistance. These markers can increase the accuracy and efficiency of aphid-resistant germplasm selection, ultimately facilitating the transfer of resistance traits to desirable wheat genotypes.


Assuntos
Afídeos , Triticum , Humanos , Animais , Triticum/genética , Afídeos/genética , Zea mays/genética , Variação Genética , Repetições de Microssatélites/genética
14.
Int J Biol Macromol ; 260(Pt 2): 129644, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266832

RESUMO

Afidopyropen is highly effective against sucking insects, including the Myzus persicae, that modulates the transient receptor potential vanilloid (TRPV) channel. However, the action mechanisms of afidopyropen to the TRPV channel remain unknown. In this study, the genes encoding the Nanchung (MpNan) and Inactive (MpIav) subunits of the TRPV channel of M. persicae (MpTRPV) were cloned, and their spatiotemporal expression profiles were investigated. Then, MpTRPV was functionally expressed in Xenopus laevis oocytes, and the AA residues crucial for afidopyropen binding were identified using the two-electrode voltage clamp (TEVC) technique. The results showed that both MpNan and MpIav exhibited the highest expression in the antennae and were most abundant in the 4th instar nymphs and adults. Knockdown of these two genes by RNAi greatly increased the toxicity of afidopyropen to the aphids. Moreover, the AA residues involved in afidopyropen binding to MpNan were predicted and L412 was further identified as the key residue for binding by TEVC analysis. The results also showed that afdopyropen and pymetrozine share the same binding site. These findings lay a foundation not only for exploring the mechanisms of pest target resistance to afidopyropen and pymetrozine but also for developing new insecticides targeting the TRPV channels of pests.


Assuntos
Afídeos , Compostos Heterocíclicos de 4 ou mais Anéis , Inseticidas , Lactonas , Canais de Potencial de Receptor Transitório , Animais , Afídeos/genética , Aminoácidos , Inseticidas/farmacologia
15.
Bull Entomol Res ; 114(1): 49-56, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38180110

RESUMO

Aphis spiraecola Patch is one of the most economically important tree fruit pests worldwide. The pyrethroid insecticide lambda-cyhalothrin is commonly used to control A. spiraecola. In this 2-year study, we quantified the resistance level of A. spiraecola to lambda-cyhalothrin in different regions of the Shaanxi province, China. The results showed that A. spiraecola had reached extremely high resistance levels with a 174-fold resistance ratio (RR) found in the Xunyi region. In addition, we compared the enzymatic activity and expression level of P450 genes among eight A. spiraecola populations. The P450 activity of A. spiraecola was significantly increased in five regions (Xunyi, Liquan, Fengxiang, Luochuan, and Xinping) compared to susceptible strain (SS). The expression levels of CYP6CY7, CYP6CY14, CYP6CY22, P4504C1-like, P4506a13, CYP4CZ1, CYP380C47, and CYP4CJ2 genes were significantly increased under lambda-cyhalothrin treatment and in the resistant field populations. A L1014F mutation in the sodium channel gene was found and the mutation rate was positively correlated with the LC50 of lambda-cyhalothrin. In conclusion, the levels of lambda-cyhalothrin resistance of A. spiraecola field populations were associated with P450s and L1014F mutations. Our combined findings provide evidence on the resistance mechanism of A. spiraecola to lambda-cyhalothrin and give a theoretical basis for rational and effective control of this pest species.


Assuntos
Afídeos , Inseticidas , Piretrinas , Canais de Sódio Disparados por Voltagem , Animais , Afídeos/genética , Piretrinas/farmacologia , Nitrilas/farmacologia , Mutação , Canais de Sódio Disparados por Voltagem/genética , Expressão Gênica , Inseticidas/farmacologia , Resistência a Inseticidas/genética
16.
BMC Genomics ; 25(1): 16, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166596

RESUMO

The Rhus gall aphid, Schlechtendalia chinensis, feeds on its primary host plant Rhus chinensis to induce galls, which have economic importance in medicines and the food industry. Rhus gall aphids have a unique life cycle and are economically beneficial but there is huge gap in genomic information about this group of aphids. Schlechtendalia chinensis induces rich-tannin galls on its host plant and is emerging as a model organism for both commercial applications and applied research in the context of gall production by insects. Here, we generated a high-quality chromosome-level assembly for the S. chinensis genome, enabling the comparison between S. chinensis and non-galling aphids. The final genome assembly is 344.59 Mb with 91.71% of the assembled sequences anchored into 13 chromosomes. We predicted 15,013 genes, of which 14,582 (97.13%) coding genes were annotated, and 99% of the predicted genes were anchored to the 13 chromosomes. This assembly reveals the endogenization of parvovirus-related DNA sequences (PRDs) in the S. chinensis genome, which could play a role in environmental adaptations. We demonstrated the characterization and classification of cytochrome P450s in the genome assembly, which are functionally crucial for sap-feeding insects and have roles in detoxification and insecticide resistance. This genome assembly also revealed the whole genome duplication events in S. chinensis, which can be considered in comparative evolutionary analysis. Our work represents a reference genome for gall-forming aphids that could be used for comparative genomic studies between galling and non-galling aphids and provides the first insight into the endogenization of PRDs in the genome of galling aphids. It also provides novel genetic information for future research on gall-formation and insect-plant interactions.


Assuntos
Afídeos , Parvovirus , Rhus , Animais , Afídeos/genética , Rhus/genética , Sequência de Bases , Cromossomos/genética , Parvovirus/genética
17.
Gene ; 899: 148144, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38195050

RESUMO

Aphids and ants are mutualistic species with a close space-time relationship, which may facilitate the occurrence of horizontal transfer events between these insect groups. Myrmar-like mariner elements were previously isolated from two ant (Myrmica ruginodis and Tapinoma ibericum) and two aphid species (Aphis fabae and Aphis hederae). The aim of this work is to determine the presence of Myrmar-like mariner elements in new ant and aphid species, as well as to analyze the likelihood of horizontal transfer events between these taxa. To accomplish this, the Myrmar-like element has been isolated from five aphid species and six ant species. Among these new analyzed species, full-length Myrmar-like mariner elements with very high sequence similarity have been isolated from the aphids Aphis nerii, Aphis spiraecola, Brachycaudus cardui, and Rhopalosiphum maidis as well as from the ants Lasius grandis and Lasius niger, even though aphids and ants belong to two insect orders (Hemiptera and Hymenoptera) that have evolved independently for at least 300 million-years. Both Lasius species establish frequent mutualistic relationships with multiple aphid species, including A. nerii, A. spiraecola, and B. cardui. The study of the putative protein encoded by them and the phylogenetic analysis suggests that they could be active transposons shared by aphids and ants through horizontal transfer events. Additionally, mariner elements with internal deletion were found in several aphids and one ant species, showing a high degree of sequence similarity among them. The characteristics of these elements with internal deletion suggest a complex origin involving various evolutionary processes, possibly including also horizontal transfer events. Myrmar-like elements have also been isolated from the other ant species, although without similarity with the aphid mariner sequences. Myrmar-like elements are also present in phylogenetically distant insect species, as well as in one crustacean species. The phylogenetic study carried out with all Myrmar-like elements suggests the probable occurrence of horizontal transfer events.


Assuntos
Formigas , Afídeos , Animais , Formigas/genética , Afídeos/genética , Elementos de DNA Transponíveis/genética , Filogenia , Simbiose/genética
18.
Pest Manag Sci ; 80(3): 1266-1278, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37889654

RESUMO

BACKGROUND: Lysiphlebia japonica Ashmead (Hymenoptera, Braconidae) is an endophagous parasitoid wasp and its host, Aphis gossypii Glover (Hemiptera, Aphididae) is a major cotton pest. L. japonica affects the growth and fatty acid metabolism of cotton aphids after parasitization and has been widely used as a biocontrol agent. However, there are currently few reports about the molecular characteristics of L. japonica, especially the differences between male and female. RESULTS: In this study, using transcriptome and proteome analysis of the abdomen of female and male parasitic wasps, respectively, we obtained a total of 27,169 DEGs and 1,194 DEPs, then a total of 909 positively correlated high-expression proteins and genes were obtained by combined omics analysis. Subsequently, 20 differentially expressed abdomen specific proteins were selected for validation by RT-qPCR and Multiple Reaction Monitoring (MRM) protein verification. The result of RT-qPCR demonstrated that all 20 genes were highly expressed in the abdomen of females, and five target proteins with unique peptide fragments and identification profiles were identified by MRM, which were venom protease, tropomyosin, lipase member I, venom serine carboxypeptidase and calreticulin, respectively. CONCLUSION: Overall, these results provided molecular resources for the differences between males and females in L. japonica and the screened 20 abdomen specific proteins were verified to demonstrate the validity of the data, which offered important molecular data resources for further studies on the related functional genes of parasitic wasps and the mechanism of parasitoids regulating the growth of aphids. © 2023 Society of Chemical Industry.


Assuntos
Afídeos , Vespas , Feminino , Masculino , Animais , Vespas/fisiologia , Proteoma/metabolismo , Transcriptoma , Afídeos/genética
19.
Int J Biol Macromol ; 254(Pt 1): 127777, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37907175

RESUMO

The cotton aphid Aphis gossypii Glover is an important cotton pest, and means of controlling this insect is a primary research focus. Although biological rhythm is an important mechanism that regulates numerous insect processes and activities, its role in cotton aphid has not been elucidated. In the present study, four highly-expressed circadian rhythm genes were selected from the cotton aphid genome database and their physicochemical properties and protein structures were analyzed. These genes were in the Takeout, Timeless, and Timeless interacting-related families, and the corresponding proteins contained highly-conserved Swis and TIMELESS domains. Gene expression analysis at multiple developmental stages revealed differing expression patterns between the four genes. AgCLK-1 had the highest relative expression of the four, especially during the nymph period. Silencing AgCLK-1 caused a significant refusal of the cotton aphids to feed at 1, 3, and 5 d of treatment. These results demonstrated that AgCLK-1 played a key role in regulating the feeding behavior of cotton aphid. This new functional understanding provides novel insights into cotton aphid biology and suggests new targeting strategies for agricultural pest control.


Assuntos
Afídeos , Humanos , Animais , Afídeos/genética , Comportamento Alimentar , Gossypium/genética
20.
Curr Opin Insect Sci ; 61: 101142, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37979724

RESUMO

Aphids present a fascinating example of phenotypic plasticity, in which a single genotype can produce dramatically different winged and wingless phenotypes that are specialized for dispersal versus reproduction, respectively. Recent work has examined many aspects of this plasticity, including its evolution, molecular control mechanisms, and genetic variation underlying the trait. In particular, exciting discoveries have been made about the signaling pathways that are responsible for controlling the production of winged versus wingless morphs, including ecdysone, dopamine, and insulin signaling, and about how specific genes such as REPTOR2 and vestigial are regulated to control winglessness. Future work will likely focus on the role of epigenetic mechanisms, as well as developing transgenic tools for more thoroughly dissecting the role of candidate plasticity-related genes.


Assuntos
Afídeos , Animais , Afídeos/genética , Genótipo , Fenótipo , Reprodução , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...